CRYSTAL DISPLAY SYSTEMS GUIDE TO SPI DISPLAYS

SPI (Serial Peripheral Interface) displays provide a low-cost, low-power solution for text and graphics. They use fewer pins than traditional parallel interfaces, making them ideal for microcontrollers with limited I/O.

This guide covers:

- The SPI interface
- 3-wire vs. 4-wire SPI
- Devices that use SPI
- Benefits and limitations
- Types of SPI displays

What is SPI Interface?

LVDS LCD technology offers several benefits that make it a preferred choice over traditional display interfaces: SPI is a serial communication standard developed by Motorola, enabling microcontrollers to connect with sensors, memory, displays, and other peripherals.

SPI uses three essential wires:

- MOSI (Master Out, Slave In) Sends data from MCU to peripheral
- MISO (Master In, Slave Out) Sends data from peripheral to MCU
- SCLK (Serial Clock) Synchronizes data transfer

A fourth optional wire, SS (Slave Select), enables communication with multiple devices on the same bus.

3-Wire vs 4-Wire SPI

3-Wire SPI

- Uses MOSI, MISO, and SCLK
- Communicates with a single slave device
- Ideal for sensors, memory chips, and basic displays

4-Wire SPI

- Adds an SS/CS (Chip Select) wire
- Allows multiple slave devices on the same bus
- Used for microSD cards, touch panels, and multiple displays

Both versions share a clock and data lines but differ in device selection capabilities.

Common uses of SPI

SPI is widely used for connecting peripherals to MCUs, such as:

- Displays (LCD, TFT, OLED, E-Ink)
- Sensors (temperature, motion, pressure)
- Storage (NOR Flash, SD cards)
- Inter-chip communication

Benefits of SPI Displays

- Compact & cost-effective Requires fewer wires than parallel interfaces
- Lower noise & interference Reduces signal distortion
- Flexible speed & power control Saves battery life
- Affordable implementation Simple hardware requirements
- Easy upgrade path Transition to faster interfaces like MIPI

Limitations of SPI Displays

- Limited resolution & speed Generally maxes out around QVGA (320×240), although new chips will support WVGA (480 x 800)
- No command transmission Requires additional control logic
- Encoding challenges Displays need specific data formatting
- **Signal degradation over distance –** Needs shielding for longer cables

SPI is best suited for small, simple displays. High-resolution screens require faster interfaces like RGB, MIPI, or LVDS.

Types of SPI Displays

- Character LCDs 16×2, 20×4 for simple text output
- PMOLED Displays High contrast, monochrome up to 3 inches (e.g., SSD1306, SH1106)
- TFT LCDs Small graphical screens (1.3" to 4.3" WVGA)
- E-Ink Displays Ultra-low power, persistent image retention

CONCLUSION

SPI is a simple, widely used interface for small, basic peripherals. While it lacks the speed for high-resolution displays, it excels in cost efficiency and ease of integration.

For compact, budget-friendly applications, SPI is an excellent choice. However, for high-performance displays, a faster interface is recommended.

SPI remains a solid starting point for embedded development, offering flexibility and future upgrade options.

Need any additional information?

If you need any assistance with pricing information, technical support or require any additional information our team would be more than happy to assist

CONTACT US:

Crystal Display Systems Ltd Unit 6 M2M Park, Fort Bridgewood Maidstone Road, Rochester, Kent. ME1 3DQ

T:+44(0) 1634 791600

E:info@crystal-display.com

W: crystal-display.com

CDS offers a comprehensive range of LCD modules, including

- Small Format TFT.....more>
- Industrial AMOLED & PMOLED displays.....more >
- Embedded SMART UART solutions.....more >

Contact our experienced applications engineers to discuss your specific requirements.

SPECIALIST GLOBAL SUPPLIERS IN INNOVATIVE LCD DISPLAY, TOUCH AND DIGITAL SIGNAGE SOLUTIONS